
End-to-EndTests in
OpenShift

Bruno Barcarol Guimarães

1

End-to-EndTests in
OpenShift

Bruno Barcarol Guimarães

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Overview

Introduction

Test types

Releases

Input images

Image pipeline

2

Overview

Introduction

Test types

Releases

Input images

Image pipeline

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Overview

Introduction

3

Introduction

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Introduction

Introduction

Introduction

https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/
pull/27275/pull-ci-openshift-origin-master-e2e-gcp/

1540385791396548608

4

Introduction

https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/
pull/27275/pull-ci-openshift-origin-master-e2e-gcp/

1540385791396548608

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Introduction

Introduction

We will revisit today the example job we looked at in the last third of the previ-
ous presentation, now in much more detail.

https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608

Introduction

https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27275/

pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608/prowjob.json*

command:
- ci-operator
args:
- --gcs-upload-secret=/secrets/gcs/service-account.json
- --image-import-pull-secret=/etc/pull-secret/.dockerconfigjson
- --lease-server-credentials-file=/etc/boskos/credentials
- --report-credentials-file=/etc/report/credentials
- --secret-dir=/secrets/ci-pull-credentials
- --secret-dir=/usr/local/e2e-gcp-cluster-profile
- --target=e2e-gcp

* how-tos: document artifacts directory #266 — openshift/ci-docs

5

Introduction

https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27275/

pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608/prowjob.json*

command:
- ci-operator
args:
- --gcs-upload-secret=/secrets/gcs/service-account.json
- --image-import-pull-secret=/etc/pull-secret/.dockerconfigjson
- --lease-server-credentials-file=/etc/boskos/credentials
- --report-credentials-file=/etc/report/credentials
- --secret-dir=/secrets/ci-pull-credentials
- --secret-dir=/usr/local/e2e-gcp-cluster-profile
- --target=e2e-gcp

* how-tos: document artifacts directory #266 — openshift/ci-docs20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Introduction

Introduction

As a reminder, this will (via prowgen) result in a ProwJob which will execute
ci-operator targeting the single test name e2e-gcp, declared in its con-
figuration file (obtained from the configresolver).

https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608/prowjob.json
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608/prowjob.json
https://github.com/openshift/ci-docs/pull/266
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608/prowjob.json
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27275/pull-ci-openshift-origin-master-e2e-gcp/1540385791396548608/prowjob.json
https://github.com/openshift/ci-docs/pull/266

Introduction

6

Introduction

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Introduction

Introduction

And this will be done by constructing and execting this step graph. See the
previous presentation for a reminder of how all of this generally works.

Introduction

https://github.com/openshift/release/blob/master/ci-operator/
config/openshift/origin/openshift-origin-master.yaml

tests:
- as: e2e-gcp

steps:
cluster_profile: gcp-openshift-gce-devel-ci-2
workflow: openshift-e2e-gcp-loki

7

Introduction

https://github.com/openshift/release/blob/master/ci-operator/
config/openshift/origin/openshift-origin-master.yaml

tests:
- as: e2e-gcp
steps:
cluster_profile: gcp-openshift-gce-devel-ci-2
workflow: openshift-e2e-gcp-loki

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Introduction

Introduction

It all starts with this innocent test definition in the configuration file…

https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-master.yaml

Test types

8

Test types

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types

(we have fancy section title slides now)

Test types

ibid

- as: verify-deps
commands: make verify-deps …
container:

from: src

…/openshift-origin-release-3.11.yaml

- as: e2e-gcp
commands: … run-tests
openshift_ansible:

cluster_profile: gcp

9

Test types

ibid

- as: verify-deps
commands: make verify-deps …
container:
from: src

…/openshift-origin-release-3.11.yaml

- as: e2e-gcp
commands: … run-tests
openshift_ansible:
cluster_profile: gcp

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types

Test types

The test entries in the configuration file havemany different forms, although
they have many similarities. steps (or, sometimes, literal_steps, as in
the previous example), denotes amulti-stage test. Other basic test types are:

• simple container tests, declared with container

• a large variety of template tests, declared with fields in the form
openshift_*

https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-release-3.11.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/origin/openshift-origin-release-3.11.yaml

Test types

https://github.com/openshift/ci-tools/blob/master/
pkg/api/types.go

type TestStepConfiguration struct {
As string `json:"as"`
Commands string `json:"commands,omitempty"`
// …
// Only one of the following can be not-null.
ContainerTestConfiguration …
MultiStageTestConfiguration …
MultiStageTestConfigurationLiteral …
OpenshiftAnsibleClusterTestConfiguration …
OpenshiftAnsibleSrcClusterTestConfiguration …
OpenshiftAnsibleCustomClusterTestConfiguration …
OpenshiftInstallerClusterTestConfiguration …
OpenshiftInstallerUPIClusterTestConfiguration …
OpenshiftInstallerUPISrcClusterTestConfiguration …
OpenshiftInstallerCustomTestImageClusterTestConfiguration …

}

10

Test types

https://github.com/openshift/ci-tools/blob/master/
pkg/api/types.go

type TestStepConfiguration struct {
As string `json:"as"`
Commands string `json:"commands,omitempty"`
// …
// Only one of the following can be not-null.
ContainerTestConfiguration …
MultiStageTestConfiguration …
MultiStageTestConfigurationLiteral …
OpenshiftAnsibleClusterTestConfiguration …
OpenshiftAnsibleSrcClusterTestConfiguration …
OpenshiftAnsibleCustomClusterTestConfiguration …
OpenshiftInstallerClusterTestConfiguration …
OpenshiftInstallerUPIClusterTestConfiguration …
OpenshiftInstallerUPISrcClusterTestConfiguration …
OpenshiftInstallerCustomTestImageClusterTestConfiguration …

}20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types

Test types

This is manifested in code in the TestStepConfiguration structure (not
to be confusedwith the TestStep structure, used inmulti-stage tests), which
uses the common pattern ofmany (optional) pointers to other structures, only
one of which is ever non-null (a sum type).

https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go

Test types / container

// Only one of the following can be not-null.
ContainerTestConfiguration \

*ContainerTestConfiguration \
`json:"container,omitempty"`

// …

11

Test types / container

// Only one of the following can be not-null.
ContainerTestConfiguration \

*ContainerTestConfiguration \
`json:"container,omitempty"`

// …

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Container

Test types / container

(these identifiers are enormous, so here is what a full line looks like)

Test types / container

type ContainerTestConfiguration struct {
From PipelineImageStreamTagReference
MemoryBackedVolume *MemoryBackedVolume
Clone *bool

}

12

Test types / container

type ContainerTestConfiguration struct {
From PipelineImageStreamTagReference
MemoryBackedVolume *MemoryBackedVolume
Clone *bool

}

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Container

Test types / container

Starting with container tests, their structure is deceptively simple. It declares
its container image plus a couple of other, more esoteric fields.

Test types / container

type TestStepConfiguration struct {
As string
Commands string
Cluster Cluster
Secret *Secret
Secrets []*Secret
Cron *string
Interval *string
ReleaseController bool
Postsubmit bool
ClusterClaim *ClusterClaim
RunIfChanged string
Optional bool
SkipIfOnlyChanged string
Timeout *prowv1.Duration
// …

13

Test types / container

type TestStepConfiguration struct {
As string
Commands string
Cluster Cluster
Secret *Secret
Secrets []*Secret
Cron *string
Interval *string
ReleaseController bool
Postsubmit bool
ClusterClaim *ClusterClaim
RunIfChanged string
Optional bool
SkipIfOnlyChanged string
Timeout *prowv1.Duration
// …20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Test types
Container

Test types / container

This is because most of the fields live in the original structure, previously ab-
breviated. The list of fields here is somewhat unruly. In the past, we had a very
relaxed policy for external contributions, so the code base — and this area in
particular — grew very “organically” (to put it favorably).
Some of these, such as the build cluster, the periodic/post-submit fields, etc.
are still useful. Some are obsolete and kept for compatibility.
As an aside, the capabilities of container tests are roughly a subset of those of
multi-stage, there is a long-termplan to unify their underlying implementation.

Test types / template

- as: e2e-gcp
commands: … run-tests
openshift_ansible:

cluster_profile: gcp

args:
- --image-import-pull-secret=/etc/pull-secret/.dockerconfigjson
- --report-credentials-file=/etc/report/credentials
- --secret-dir=/usr/local/e2e-gcp-periodic-cluster-profile
- --target=e2e-gcp-periodic
- --template=/usr/local/e2e-gcp-periodic
- --gcs-upload-secret=/secrets/gcs/service-account.json
command:
- ci-operator

14

Test types / template

- as: e2e-gcp
commands: … run-tests
openshift_ansible:
cluster_profile: gcp

args:
- --image-import-pull-secret=/etc/pull-secret/.dockerconfigjson
- --report-credentials-file=/etc/report/credentials
- --secret-dir=/usr/local/e2e-gcp-periodic-cluster-profile
- --target=e2e-gcp-periodic
- --template=/usr/local/e2e-gcp-periodic
- --gcs-upload-secret=/secrets/gcs/service-account.json
command:
- ci-operator20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

The second type of test (also in chronological order) is everyone’s favorite:
template tests. This was the first mechanism added to ci-operator to sup-
port end-to-end tests, or in general anything more complex than a container
test.
They are mostly a historical curiosity at this point, used only in very old, 3.11
jobs, but they provide some context to some of the more dubious aspects of
ci-operator.
There is no (with one exception due to a failed plan) corresponding test def-
inition in the configuration file for these tests: the entry in tests is used ex-
clusively by prowgen. Instead, the definition is supplied at runtime via the
--template argument.

Test types / template

volumeMounts:
- mountPath: /usr/local/e2e-gcp-periodic

name: job-definition
subPath: cluster-launch-e2e.yaml

volumes:
- configMap:

name: prow-job-cluster-launch-e2e
name: job-definition

15

Test types / template

volumeMounts:
- mountPath: /usr/local/e2e-gcp-periodic
name: job-definition
subPath: cluster-launch-e2e.yaml

volumes:
- configMap:

name: prow-job-cluster-launch-e2e
name: job-definition

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

In our Prow jobs, this is done by mounting the definition via a ConfigMap…

Test types / template

https://github.com/openshift/release/tree/master/
ci-operator/templates

ci-operator/templates/
master-sidecar-3.yaml
master-sidecar-4.4.yaml
openshift/

installer/
cluster-launch-installer-custom-test-image.yaml
cluster-launch-installer-e2e.yaml
cluster-launch-installer-libvirt-e2e.yaml
cluster-launch-installer-metal-e2e.yaml
cluster-launch-installer-openstack-e2e.yaml
cluster-launch-installer-openstack-upi-e2e.yaml
cluster-launch-installer-src.yaml
cluster-launch-installer-upi-e2e.yaml

openshift-ansible/
cluster-launch-e2e-openshift-ansible.yaml
cluster-launch-e2e.yaml
cluster-scaleup-e2e-40.yaml

16

Test types / template

https://github.com/openshift/release/tree/master/
ci-operator/templates

ci-operator/templates/
master-sidecar-3.yaml
master-sidecar-4.4.yaml
openshift/

installer/
cluster-launch-installer-custom-test-image.yaml
cluster-launch-installer-e2e.yaml
cluster-launch-installer-libvirt-e2e.yaml
cluster-launch-installer-metal-e2e.yaml
cluster-launch-installer-openstack-e2e.yaml
cluster-launch-installer-openstack-upi-e2e.yaml
cluster-launch-installer-src.yaml
cluster-launch-installer-upi-e2e.yaml

openshift-ansible/
cluster-launch-e2e-openshift-ansible.yaml
cluster-launch-e2e.yaml
cluster-scaleup-e2e-40.yaml20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

…which in turn are populated via updateconfig from the files in the dreaded
ci-operator/templates directory in openshift/release.

https://github.com/openshift/release/tree/master/ci-operator/templates
https://github.com/openshift/release/tree/master/ci-operator/templates
https://github.com/openshift/release/tree/master/ci-operator/templates
https://github.com/openshift/release/tree/master/ci-operator/templates

Test types / template

…/openshift/installer/cluster-launch-installer-e2e.yaml

kind: Template
apiVersion: template.openshift.io/v1

parameters:
- name: JOB_NAME

required: true
- name: JOB_NAME_SAFE

required: true
…

17

Test types / template

…/openshift/installer/cluster-launch-installer-e2e.yaml

kind: Template
apiVersion: template.openshift.io/v1

parameters:
- name: JOB_NAME
required: true

- name: JOB_NAME_SAFE
required: true

…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

Each of these files is an OpenShift Template object, which consists of a list
of parameters (strings, essentially)…

https://github.com/openshift/release/blob/master/ci-operator/templates/openshift/installer/cluster-launch-installer-e2e.yaml
https://github.com/openshift/release/blob/master/ci-operator/templates/openshift/installer/cluster-launch-installer-e2e.yaml

Test types / template

objects:
We want the cluster to be able to access
these images
- kind: RoleBinding

apiVersion: authorization.openshift.io/v1
metadata:

name: ${JOB_NAME_SAFE}-image-puller
namespace: ${NAMESPACE}

…

18

Test types / template

objects:
We want the cluster to be able to access
these images
- kind: RoleBinding
apiVersion: authorization.openshift.io/v1
metadata:
name: ${JOB_NAME_SAFE}-image-puller
namespace: ${NAMESPACE}

…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

…and a list of objects. ${…} strings are replaced by parameter values when the
template is instantiated (and good luck telling what is bash interpolation and
what is template substitution in a complex Pod definition).

Test types / template

The e2e pod spins up a cluster, runs e2e tests,
and then cleans up the cluster.
- kind: Pod

apiVersion: v1
metadata:

name: ${JOB_NAME_SAFE}
namespace: ${NAMESPACE}

…

19

Test types / template

The e2e pod spins up a cluster, runs e2e tests,
and then cleans up the cluster.
- kind: Pod
apiVersion: v1
metadata:
name: ${JOB_NAME_SAFE}
namespace: ${NAMESPACE}

…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

And that is a summary of the entirety of the capabilities provided by template
tests. From there, users would create a Pod definition (n.b.: a single one) to
execute their test using colossal, inline shell scripts.

Test types / template

containers:
Once the cluster is up, executes shared tests
- name: test
…
Runs an install
- name: setup
…
Performs cleanup of all created resources
- name: teardown
…

20

Test types / template

containers:
Once the cluster is up, executes shared tests
- name: test
…
Runs an install
- name: setup
…
Performs cleanup of all created resources
- name: teardown
…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

In practice, a few templates were developed and used by most tests, all fol-
lowing roughly this structure, later mirrored in multi-stage tests: a setup con-
tainer performed the cluster installation, a test container executed Open-
Shift or repository tests, and a teardown container destroyed the temporary
cluster.

Test types / template

parameters:
…
- name: IMAGE_FORMAT
- name: IMAGE_INSTALLER

required: true
- name: IMAGE_TESTS

required: true
…
- name: RELEASE_IMAGE_LATEST

required: true
…

21

Test types / template

parameters:
…
- name: IMAGE_FORMAT
- name: IMAGE_INSTALLER
required: true

- name: IMAGE_TESTS
required: true

…
- name: RELEASE_IMAGE_LATEST
required: true

…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Template

Test types / template

Configuration and parameterization was done via these template parameters,
some of which are treated especially by ci-operator:

• IMAGE_FORMAT is populated with the public registry pull spec for built
images.

• IMAGE_* entries are populated with entries from the input release
stream.

• RELEASE_IMAGE_* entries are populated with the release payload pull
spec.

The presence of each of these variables also causes the template step to de-
pend on the step which provides it (the Providesmethod in each step type).
Environment variables can also be used to initialize or override these values,
which is still used in some of our E2E tests, even in multi-stage (e.g. the re-
lease controller uses RELEASE_IMAGE_LATEST to override the input release
payload).

Test types / multi-stage

▶ test definition
▶ test phases

▶ pre
▶ test
▶ post

▶ step registry
▶ references
▶ chains
▶ workflows
▶ observers

▶ container image

▶ parameters

▶ dependencies

▶ credentials

▶ leases

▶ overriding

▶ …

22

Test types / multi-stage

▶ test definition
▶ test phases

▶ pre
▶ test
▶ post

▶ step registry
▶ references
▶ chains
▶ workflows
▶ observers

▶ container image

▶ parameters

▶ dependencies

▶ credentials

▶ leases

▶ overriding

▶ …

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

Of course, multi-stage tests are a universe of their own and worth (at least) a
presentation in themselves. Here are some of the capabilities, most of which
we will not have time to analyze today.

Test types / multi-stage

type MultiStageTestConfiguration struct {
ClusterProfile ClusterProfile
Pre []TestStep
Test []TestStep
Post []TestStep
Workflow *string
Environment TestEnvironment
Dependencies TestDependencies
DNSConfig *StepDNSConfig
Leases []StepLease
AllowSkipOnSuccess *bool
AllowBestEffortPostSteps *bool
Observers *Observers
DependencyOverrides DependencyOverrides

}

23

Test types / multi-stage

type MultiStageTestConfiguration struct {
ClusterProfile ClusterProfile
Pre []TestStep
Test []TestStep
Post []TestStep
Workflow *string
Environment TestEnvironment
Dependencies TestDependencies
DNSConfig *StepDNSConfig
Leases []StepLease
AllowSkipOnSuccess *bool
AllowBestEffortPostSteps *bool
Observers *Observers
DependencyOverrides DependencyOverrides

}20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

Two structures, which share most of their fields, are involved in the configu-
ration of multi-stage tests. MultiStageTestConfiguration is loaded di-
rectly from the steps field. It represents a user test definition which poten-
tially needs to go through resolution, where references to steps, chains, and
workflows from the step registry have to be replaced with their defintions.
The --unresolved-config argument and the UNRESOLVED_CONFIG vari-
ables correspond to this structure.

Test types / multi-stage

type MultiStageTestConfigurationLiteral struct {
ClusterProfile ClusterProfile
Pre []LiteralTestStep
Test []LiteralTestStep
Post []LiteralTestStep
Environment TestEnvironment
Dependencies TestDependencies
DNSConfig *StepDNSConfig
Leases []StepLease
AllowSkipOnSuccess *bool
AllowBestEffortPostSteps *bool
Observers []Observer
DependencyOverrides DependencyOverrides
Timeout *prowv1.Duration

}

24

Test types / multi-stage

type MultiStageTestConfigurationLiteral struct {
ClusterProfile ClusterProfile
Pre []LiteralTestStep
Test []LiteralTestStep
Post []LiteralTestStep
Environment TestEnvironment
Dependencies TestDependencies
DNSConfig *StepDNSConfig
Leases []StepLease
AllowSkipOnSuccess *bool
AllowBestEffortPostSteps *bool
Observers []Observer
DependencyOverrides DependencyOverrides
Timeout *prowv1.Duration

}20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

Its counterpart is MultiStageTestConfigurationLiteral, which repre-
sents a resolved configuration, and corresponds to the --config argument
and the CONFIG_SPEC variable.

Test types / multi-stage

type LiteralTestStep struct {
As string
From string
FromImage *ImageStreamTagReference
Commands string
Resources ResourceRequirements
Timeout *prowv1.Duration
GracePeriod *prowv1.Duration
Credentials []CredentialReference
Environment []StepParameter
Dependencies []StepDependency

25

Test types / multi-stage

type LiteralTestStep struct {
As string
From string
FromImage *ImageStreamTagReference
Commands string
Resources ResourceRequirements
Timeout *prowv1.Duration
GracePeriod *prowv1.Duration
Credentials []CredentialReference
Environment []StepParameter
Dependencies []StepDependency

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

This distinction is also reflected in the LiteralTestStep structure, lists of
which compose the input configuration…

Test types / multi-stage

DNSConfig *StepDNSConfig
Leases []StepLease
OptionalOnSuccess *bool
BestEffort *bool
Cli string
Observers []string
RunAsScript *bool

}

26

Test types / multi-stage

DNSConfig *StepDNSConfig
Leases []StepLease
OptionalOnSuccess *bool
BestEffort *bool
Cli string
Observers []string
RunAsScript *bool

}

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

Test types / multi-stage

type TestStep struct {
*LiteralTestStep
Reference *string
Chain *string

}

27

Test types / multi-stage

type TestStep struct {
*LiteralTestStep
Reference *string
Chain *string

}

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

…and the TestStep structure, which has the same contents but has also the
option of referring to an external definition from the registry.

Test types / multi-stage

tests:
- as: multi-stage

steps: # …
- as: multi-stage-literal

literal_steps: # …

$ JOB_SPEC=… ci-operator
$ ci-operator --config …
$ ci-operator --unresolved-config …
$ CONFIG_SPEC=… ci-operator …
$ UNRESOLVED_CONFIG=… ci-operator …

28

Test types / multi-stage

tests:
- as: multi-stage
steps: # …

- as: multi-stage-literal
literal_steps: # …

$ JOB_SPEC=… ci-operator
$ ci-operator --config …
$ ci-operator --unresolved-config …
$ CONFIG_SPEC=… ci-operator …
$ UNRESOLVED_CONFIG=… ci-operator …

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Test types
Multi-stage

Test types / multi-stage

These two types exist to distinguish the two states in code and between ser-
vices, e.g.:

• regular jobs receive a literal configuration from the resolver

• pj-rehearse loads the unresolved configuration and expands it itself
based on the PR contents, setting $UNRESOLVED_CONFIG

• release jobs provide their own inline configuration via $CONFIG_SPEC or
$UNRSOLVED_CONFIG depending on the case

• etc.

Releases

29

Releases

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

https://github.com/openshift/ci-tools/blob/master/
pkg/api/types.go

type ReleaseBuildConfiguration struct {
Metadata Metadata
InputConfiguration
// …

}

type InputConfiguration struct {
// …
Releases map[string]UnresolvedRelease

}

30

Releases

https://github.com/openshift/ci-tools/blob/master/
pkg/api/types.go

type ReleaseBuildConfiguration struct {
Metadata Metadata
InputConfiguration
// …

}

type InputConfiguration struct {
// …
Releases map[string]UnresolvedRelease

}

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

The first major input to E2E tests, seen at the beginning of the output log, are
the release streams / payloads. They are configured in the releases entry in
the configuration file.
Originally, they were specified in tag_specification, which provides a
fixed subset of the same functionality. That field is now deprecated and will
be removed, but can still be found in many configuration files.

https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/types.go

Releases

type UnresolvedRelease struct {
// Integration describes an integration stream
// which we can create a payload out of
Integration *Integration
// Candidate describes a candidate release
// payload
Candidate *Candidate
// Prerelease describes a yet-to-be released
// payload
Prerelease *Prerelease
// Release describes a released payload
Release *Release

}

31

Releases

type UnresolvedRelease struct {
// Integration describes an integration stream
// which we can create a payload out of
Integration *Integration
// Candidate describes a candidate release
// payload
Candidate *Candidate
// Prerelease describes a yet-to-be released
// payload
Prerelease *Prerelease
// Release describes a released payload
Release *Release

}20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

The top level keys of the releases field are simply identifiers. Each value is a
structure in the familiar format where only one of the pointers is ever non-null.

Releases

type Candidate struct {
Product ReleaseProduct
Architecture ReleaseArchitecture
Stream ReleaseStream
Version string
Relative int

}

type Prerelease struct {
Product ReleaseProduct
Architecture ReleaseArchitecture
VersionBounds VersionBounds

}

32

Releases

type Candidate struct {
Product ReleaseProduct
Architecture ReleaseArchitecture
Stream ReleaseStream
Version string
Relative int

}

type Prerelease struct {
Product ReleaseProduct
Architecture ReleaseArchitecture
VersionBounds VersionBounds

}20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

The release, prerelease, and candidate types all refer to existing pay-
loads: they vary only in their source. integration streams (when not over-
ridden, as described later) use ImageStreams.

Releases

pkg/release/
candidate/

client.go
types.go

client.go
config/

client.go
config.go

official/
client.go
types.go

prerelease/
client.go

33

Releases

pkg/release/
candidate/

client.go
types.go

client.go
config/

client.go
config.go

official/
client.go
types.go

prerelease/
client.go20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

The different sources used for these types can be seen in pkg/release in
openshift/ci-tools.

Releases

▶ candidate / prerelease
▶ https://amd64.ocp.releases.ci.openshift.org
▶ release controller

▶ release
▶ https://api.openshift.com/api/upgrades_info/v1/graph
▶ cincinnati

34

Releases

▶ candidate / prerelease
▶ https://amd64.ocp.releases.ci.openshift.org
▶ release controller

▶ release
▶ https://api.openshift.com/api/upgrades_info/v1/graph
▶ cincinnati

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

Both candidate and prerelease types obtain their release payloads from
the release-controller, according to the input values.
The release type obtains official releases from cincinnati.

https://amd64.ocp.releases.ci.openshift.org
https://api.openshift.com/api/upgrades_info/v1/graph
https://amd64.ocp.releases.ci.openshift.org
https://api.openshift.com/api/upgrades_info/v1/graph

Releases

releases:
initial:
integration:
name: "4.10"
namespace: ocp

latest:
integration:
include_built_images: \
true

name: "4.10"
namespace: ocp

▶ ReleaseImagesTagStep
▶ source→ destination

ImageStream
▶ $namespace/$name→

ci-op-*/stable*
▶ AssembleReleaseStep

▶ ImageStream→
release payload

▶ stable*→ release:*
▶ will wait for built images if

include_built_images

35

Releases

releases:
initial:
integration:

name: "4.10"
namespace: ocp

latest:
integration:
include_built_images: \

true
name: "4.10"
namespace: ocp

▶ ReleaseImagesTagStep
▶ source→ destination

ImageStream
▶ $namespace/$name→

ci-op-*/stable*
▶ AssembleReleaseStep

▶ ImageStream→
release payload

▶ stable*→ release:*
▶ will wait for built images if

include_built_images

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

The two categories (payload vs. stream) determine the steps ci-operator
will take to import and process the release in order to make it available to
the test. integration streams, as mentioned previously, come from an
ImageStream. This means two steps are required:

• ReleaseImagesTagStep will import (i.e. copy) the tags from the
source.

• AssembleReleaseStepwill create a release payload from the resulting
ImageStream. If an entry declares include_built_images, this will
cause this step to wait for all images to be built and tagged into the
stream, so that they can be included in the payload. This is usually the
case for latest payloads, so that they can be used to test the resulting
release containing images built using the code under test.

Releases

tag_specification:
namespace: ocp
name: "4.10"

▶ always initial and latest
▶ include_built_images

implicitly for latest
▶ ReleaseImagesTagStep

(≈ ReleaseSnapshotStep)
▶ RELEASE_IMAGE_*

36

Releases

tag_specification:
namespace: ocp
name: "4.10"

▶ always initial and latest
▶ include_built_images

implicitly for latest
▶ ReleaseImagesTagStep

(≈ ReleaseSnapshotStep)
▶ RELEASE_IMAGE_*

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

tag_specification is the precursor to integration (and releases in
general). It is legacy now but can be found in some old jobs (and sometimes
causes problems). It works roughly like a group of fixed values for integration
streams.
Bothintegration releases andtag_specification can have their values
overridden by RELEASE_IMAGE_* environment variables. When this happens
(e.g. in jobs created by the release controller), the images are treated as input
release payloads and processed as described below.

Releases

$ oc adm release extract \
--file image-references \
quay.io/openshift/okd:4.10.0-0.okd-2022-07-09-073606 \
| yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:

name: 4.10.0-0.okd-2022-07-09-073606
creationTimestamp: 2022-07-10T09:12:53Z
annotations:
release.openshift.io/from-image-stream: >
origin/4.10-2022-07-09-073606

release.openshift.io/from-release: >
registry.ci.openshift.org/origin/release:4.10.0-0.…

…

37

Releases

$ oc adm release extract \
--file image-references \
quay.io/openshift/okd:4.10.0-0.okd-2022-07-09-073606 \
| yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
name: 4.10.0-0.okd-2022-07-09-073606
creationTimestamp: 2022-07-10T09:12:53Z
annotations:
release.openshift.io/from-image-stream: >

origin/4.10-2022-07-09-073606
release.openshift.io/from-release: >

registry.ci.openshift.org/origin/release:4.10.0-0.…
…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

Here is an example of the relevant contents of a release payload image. It con-
tains the name, date of creation, source, …

Releases

spec:
lookupPolicy:
local: false

tags:
- name: alibaba-cloud-controller-manager
annotations:
io.openshift.build.commit.id: 0
io.openshift.build.commit.ref: release-4.10
io.openshift.build.source-location: >
https://github.com/openshift/…

from:
kind: DockerImage
name: quay.io/openshift/okd-content@sha256:…

generation: null
importPolicy:
referencePolicy:
type: 0

…

38

Releases

spec:
lookupPolicy:
local: false

tags:
- name: alibaba-cloud-controller-manager
annotations:

io.openshift.build.commit.id: 0
io.openshift.build.commit.ref: release-4.10
io.openshift.build.source-location: >

https://github.com/openshift/…
from:

kind: DockerImage
name: quay.io/openshift/okd-content@sha256:…

generation: null
importPolicy:
referencePolicy:

type: 0
…20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

…and the list of image references which will be used in the cluster installation
and configuration.

Releases

releases:
latest:

release:
architecture: amd64
channel: stable
version: "4.10"

▶ candidate / prerelease
▶ ImportReleaseStep

▶ release payload→
ImageStream

▶ $src→ release:*
▶ tags→ ImageStream
▶ release:*→

oc … extract→
stable*

39

Releases

releases:
latest:
release:

architecture: amd64
channel: stable
version: "4.10"

▶ candidate / prerelease
▶ ImportReleaseStep

▶ release payload→
ImageStream

▶ $src→ release:*
▶ tags→ ImageStream
▶ release:*→

oc … extract→
stable*

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Releases

Releases

The other types of releases use a completely different inputmechanism. Since
these are already published as release payloads, ImportReleaseStep is
used instead. It:

• imports the payload directly to the release ImageStream (via
OpenShift)

• extracts the images to stable*, so that individual images can be used
in the same way as integration streams

Input images

40

Input images

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images

Input images / image mirroring

“CI cycle”
0. import images / releases
1. build images
2. execute tests
3. promote images
4. goto 0

41

Input images / image mirroring

“CI cycle”
0. import images / releases
1. build images
2. execute tests
3. promote images
4. goto 0

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
Image mirroring

Input images / image mirroring

In the next few sections, we are going to look at what is described as the ”CI
cycle” or ”CI loop”: the process by which a release stream goes from version x
to version x+ 1.
We start with two preexisting sets of images (more on that later) which are
imported into the test namespace:

• images from the release the particular component is part of

• auxiliary images, used in image builds and in the execution of tests

Images are then built and tests are executed to validate them, both by them-
selves and incorporated into the release stream (this is why youmust have im-
age builds / tests if there is a promotion rule).
Finally, if all checks are satisfied, the images are ”promoted”, i.e. written to the
same release streamwhichwas imported at the beginning, thus generating the
x+1 release. Future executions of this and other pipelines will use the new set
of images.

Input images / image mirroring

“CI cycle”
-1. ?
0. import images / releases
1. build images
2. execute tests
3. promote images
4. goto 0

41

Input images / image mirroring

“CI cycle”
-1. ?
0. import images / releases
1. build images
2. execute tests
3. promote images
4. goto 0

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
Image mirroring

Input images / image mirroring

There remains, however, the question of how this process originates: if each
pipeline execution is an inductive step, what is the basis?

Input images / image mirroring

promotion

images

tests

image import

release import

app.ci

cincinnati

release-controller
test namespace

42

Input images / image mirroring

promotion

images

tests

image import

release import

app.ci

cincinnati

release-controller
test namespace

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
Image mirroring

Input images / image mirroring

This is the pictorial representation of this process. Images come from the left:
base images come from the central registry in app.ci (more on that also
later), release images come from any of the three places, depending on which
type of releases field is used.
The sub-graph which originates in app.ci and returns to it finally after the
promotion step is the CI cycle.

Input images / image mirroring

▶ supplemental images
▶ https://github.com/openshift/release/tree/master/

clusters/app.ci/supplemental-ci-images
▶ BuildConfigs

▶ registry.ci.openshift.org/ci/ci-tools-build-root

▶ image mirroring
▶ https://github.com/openshift/release/tree/master/

core-services/image-mirroring
▶ Quay/etc. ↔ app.ci

▶ registry.ci.openshift.org/coreos/stream9:9

▶ ART / OCP builder images
▶ https://docs.ci.openshift.org/docs/architecture/images/
▶ https://github.com/openshift/ocp-build-data.git

▶ registry.ci.openshift.org/ocp/builder:…

43

Input images / image mirroring

▶ supplemental images
▶ https://github.com/openshift/release/tree/master/

clusters/app.ci/supplemental-ci-images
▶ BuildConfigs

▶ registry.ci.openshift.org/ci/ci-tools-build-root

▶ image mirroring
▶ https://github.com/openshift/release/tree/master/

core-services/image-mirroring
▶ Quay/etc. ↔ app.ci

▶ registry.ci.openshift.org/coreos/stream9:9

▶ ART / OCP builder images
▶ https://docs.ci.openshift.org/docs/architecture/images/
▶ https://github.com/openshift/ocp-build-data.git

▶ registry.ci.openshift.org/ocp/builder:…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
Image mirroring

Input images / image mirroring

Base images can come from several places:

• Images can be built directly using OpenShift BuildConfigs.

• A mirroring process exists between app.ci and Quay. It is actually
bidirectional, but here we are only interested in images which are
imported from Quay.

• Productized images, used to build official OpenShift release images,
come from ART.

https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://docs.ci.openshift.org/docs/architecture/images/
https://github.com/openshift/ocp-build-data.git
https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://docs.ci.openshift.org/docs/architecture/images/
https://github.com/openshift/ocp-build-data.git

Input images / image mirroring

▶ supplemental images
▶ https://github.com/openshift/release/tree/master/

clusters/app.ci/supplemental-ci-images
▶ BuildConfigs
▶ registry.ci.openshift.org/ci/ci-tools-build-root

▶ image mirroring
▶ https://github.com/openshift/release/tree/master/

core-services/image-mirroring
▶ Quay/etc. ↔ app.ci
▶ registry.ci.openshift.org/coreos/stream9:9

▶ ART / OCP builder images
▶ https://docs.ci.openshift.org/docs/architecture/images/
▶ https://github.com/openshift/ocp-build-data.git
▶ registry.ci.openshift.org/ocp/builder:…

43

Input images / image mirroring

▶ supplemental images
▶ https://github.com/openshift/release/tree/master/

clusters/app.ci/supplemental-ci-images
▶ BuildConfigs
▶ registry.ci.openshift.org/ci/ci-tools-build-root

▶ image mirroring
▶ https://github.com/openshift/release/tree/master/

core-services/image-mirroring
▶ Quay/etc. ↔ app.ci
▶ registry.ci.openshift.org/coreos/stream9:9

▶ ART / OCP builder images
▶ https://docs.ci.openshift.org/docs/architecture/images/
▶ https://github.com/openshift/ocp-build-data.git
▶ registry.ci.openshift.org/ocp/builder:…20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Input images
Image mirroring

Input images / image mirroring

Note, however, that these images are all located in theapp.ci central registry.
Initially, they were simply referenced directly, but that very soon turned out to
not scale to the number of jobs we had at the time (which was a small fraction
of the current number).

https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://docs.ci.openshift.org/docs/architecture/images/
https://github.com/openshift/ocp-build-data.git
https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/clusters/app.ci/supplemental-ci-images
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://github.com/openshift/release/tree/master/core-services/image-mirroring
https://docs.ci.openshift.org/docs/architecture/images/
https://github.com/openshift/ocp-build-data.git

Input images / dptp-controller-manager

dptp-controller-manager
▶ cmd/dptp-controller-manager/
▶ pkg/controller/test-images-distributor/

44

Input images / dptp-controller-manager

dptp-controller-manager
▶ cmd/dptp-controller-manager/
▶ pkg/controller/test-images-distributor/

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
dptp-controller-manager

Input images / dptp-controller-manager

For this reason, there is now a process which imports those images to each
build cluster whenever required. It is one of the processes executed as part
of the dptp-controller-manager (famed cluster node assassin) and is
named test-images-distributor.

https://github.com/openshift/ci-tools/blob/master/cmd/dptp-controller-manager/
https://github.com/openshift/ci-tools/blob/master/pkg/controller/test-images-distributor/
https://github.com/openshift/ci-tools/blob/master/cmd/dptp-controller-manager/
https://github.com/openshift/ci-tools/blob/master/pkg/controller/test-images-distributor/

Input images / dptp-controller-manager

args:
…
- --enable-controller=test_images_distributor
- --enable-controller=promotionreconciler
- --enable-controller=serviceaccount_secret_refresher
- --enable-controller=testimagestreamimportcleaner
…

45

Input images / dptp-controller-manager

args:
…
- --enable-controller=test_images_distributor
- --enable-controller=promotionreconciler
- --enable-controller=serviceaccount_secret_refresher
- --enable-controller=testimagestreamimportcleaner
…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
dptp-controller-manager

Input images / dptp-controller-manager

The command line shows the enabled controllers, which perform various func-
tions in the CI clusters.

Input images / dptp-controller-manager

…
- --release-repo-git-sync-path=/var/repo/release
- --kubeconfig-dir=/var/kubeconfigs
- --registry-cluster-name=app.ci
- --testImagesDistributorOptions \

.additional-image-stream-tag=ocp/builder:golang-1.10
…
- --testImagesDistributorOptions \

.additional-image-stream-tag= \
ocp/builder:rhel-7-golang-1.11

…
- --testImagesDistributorOptions \

.additional-image-stream-namespace=ci
- --testImagesDistributorOptions \

.additional-image-stream=rhcos/machine-os-content
…

46

Input images / dptp-controller-manager

…
- --release-repo-git-sync-path=/var/repo/release
- --kubeconfig-dir=/var/kubeconfigs
- --registry-cluster-name=app.ci
- --testImagesDistributorOptions \

.additional-image-stream-tag=ocp/builder:golang-1.10
…
- --testImagesDistributorOptions \

.additional-image-stream-tag= \
ocp/builder:rhel-7-golang-1.11

…
- --testImagesDistributorOptions \

.additional-image-stream-namespace=ci
- --testImagesDistributorOptions \

.additional-image-stream=rhcos/machine-os-content
…20

22
-0

9-
0
9 End-to-End Tests in OpenShift

Input images
dptp-controller-manager

Input images / dptp-controller-manager

It has a few options to explicitly include image streams and tags…

Input images / dptp-controller-manager

pkg/api/helper/imageextraction.go
▶ TestInputImageStreamsFromResolvedConfig
▶ TestInputImageStreamTagsFromResolvedConfig

47

Input images / dptp-controller-manager

pkg/api/helper/imageextraction.go
▶ TestInputImageStreamsFromResolvedConfig
▶ TestInputImageStreamTagsFromResolvedConfig

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
dptp-controller-manager

Input images / dptp-controller-manager

…but itsmain function is to inspect everyci-operator configuration file and
extract input images to be synchronized, which it does automatically whenever
the source streams are changed.

https://github.com/openshift/ci-tools/blob/master/pkg/api/helper/imageextraction.go
https://github.com/openshift/ci-tools/blob/master/pkg/api/helper/imageextraction.go

Input images / image promotion

https://prow.ci.openshift.org/view/gs/origin-ci-test/
logs/branch-ci-openshift-ci-tools-master-images/
1561993456950185984

…
Building src
Build src succeeded after 4m48s
Building bin
Build bin succeeded after 25m54s
Building determinize-peribolos
Building ci-secret-generator
Building ci-operator-config-mirror
…

48

Input images / image promotion

https://prow.ci.openshift.org/view/gs/origin-ci-test/
logs/branch-ci-openshift-ci-tools-master-images/
1561993456950185984

…
Building src
Build src succeeded after 4m48s
Building bin
Build bin succeeded after 25m54s
Building determinize-peribolos
Building ci-secret-generator
Building ci-operator-config-mirror
…

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
Image promotion

Input images / image promotion

Promotion is a relatively simple matter now that we have looked at the rest of
the pipeline. We start by building all images not explicitly excluded, …

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/branch-ci-openshift-ci-tools-master-images/1561993456950185984
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/branch-ci-openshift-ci-tools-master-images/1561993456950185984
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/branch-ci-openshift-ci-tools-master-images/1561993456950185984
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/branch-ci-openshift-ci-tools-master-images/1561993456950185984
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/branch-ci-openshift-ci-tools-master-images/1561993456950185984
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/branch-ci-openshift-ci-tools-master-images/1561993456950185984

Input images / image promotion

…
Build prcreator succeeded after 14m26s
Tagging prcreator into stable
Build private-prow-configs-mirror \

succeeded after 15m51s
Tagging private-prow-configs-mirror into stable
Promoting tags to ci/${component}:latest: \

applyconfig, auto-aggregator-job-names, \
auto-config-brancher, auto-peribolos-sync, \
auto-sippy-config-generator, …

Ran for 1h7m10s

49

Input images / image promotion

…
Build prcreator succeeded after 14m26s
Tagging prcreator into stable
Build private-prow-configs-mirror \

succeeded after 15m51s
Tagging private-prow-configs-mirror into stable
Promoting tags to ci/${component}:latest: \

applyconfig, auto-aggregator-job-names, \
auto-config-brancher, auto-peribolos-sync, \
auto-sippy-config-generator, …

Ran for 1h7m10s

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Input images
Image promotion

Input images / image promotion

… then tag them in the stable ImageStream as usual, and finally transfer
them to the central registry in app.ci, where they will be available to future
jobs.

Image pipeline

50

Image pipeline

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Image pipeline

Image pipeline

root

$name

src

bin

test-bin

rpms $name

$name-without-rpms

$name stable:$namesrc-bundle

$name ci-index-* ci-index-*-gen

cache

.from
.inputs

.substitutions

.base_index
.operator_index

build_root
.use_build_cache

$JOB_SPEC.refs
$JOB_SPEC.extra_refs

binary_build_commands

test_binary_build_commands

rpm_build_commands

base_rpm_images

base_images
from_image base_rpm_images

images

operator.bundles

operator

operator.bundles operator.bundles

51

Image pipeline

root

$name

src

bin

test-bin

rpms $name

$name-without-rpms

$name stable:$namesrc-bundle

$name ci-index-* ci-index-*-gen

cache

.from
.inputs

.substitutions

.base_index
.operator_index

build_root
.use_build_cache

$JOB_SPEC.refs
$JOB_SPEC.extra_refs

binary_build_commands

test_binary_build_commands

rpm_build_commands

base_rpm_images

base_images
from_image base_rpm_images

images

operator.bundles

operator

operator.bundles operator.bundles

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Image pipeline

Image pipeline

Legend:

• Solid boxes are pipeline images (tags, technically), solid lines are
dependencies.

• The dashed stable box represents the ”internal” promotion to the
stable stream prior to the execution of tests.

• Dashed lines represent edges not fully depicted since they are optional
and can be added to any image in the pipeline:

– Each entry in operator.substitutionsmakes src-bundle
depend on that image.

– The operator.substitutions entry, if specified, makes the
src-bundle depend on those images.

– The operator.base_index entry, if specified, makes all index
generator images depend on that image.

Thank you

52

Thank you

20
22

-0
9-
0
9 End-to-End Tests in OpenShift

Image pipeline

