
ci-operator
multi-stage tests

Bruno Barcarol Guimarães

1

ci-operator
multi-stage tests

Bruno Barcarol Guimarães

20
22

-1
0
-2
0

ci-operator multi-stage tests

Overview

Introduction
▶ Motivation

Test definitions
▶ Phases
▶ Images
▶ Credentials
▶ Parameters
▶ Dependencies
▶ etc.

Step registry
▶ Discoverable
▶ Referenceable
▶ Verifiable
▶ Reusable

2

Overview

Introduction
▶ Motivation

Test definitions
▶ Phases
▶ Images
▶ Credentials
▶ Parameters
▶ Dependencies
▶ etc.

Step registry
▶ Discoverable
▶ Referenceable
▶ Verifiable
▶ Reusable20

22
-1
0
-2
0

ci-operator multi-stage tests

Overview

This presentation can be viewed independentely, but is also a continuation of
the previous two, which can be found in the ci-docs page:

• The initial ci-operator presentation has more details about the
overall architecture and details and can help connect the topics
presented here.

• The E2E test presentation has some extra historical context and shows in
more detail how multi-stage tests are used in the OpenShift CI system.

https://docs.ci.openshift.org/docs/getting-started/useful-links#presentations

Introduction

▶ https://docs.google.com/document/d/1md-1BMf4_
7mtKgGVoeZ3jOh4zSIBSjwl6vTTAYESwIM
▶ Multi-Stage Tests Design Document

▶ https://docs.ci.openshift.org
▶ docs/architecture/step-registry
▶ docs/architecture/ci-operator

3

Introduction

▶ https://docs.google.com/document/d/1md-1BMf4_
7mtKgGVoeZ3jOh4zSIBSjwl6vTTAYESwIM
▶ Multi-Stage Tests Design Document

▶ https://docs.ci.openshift.org
▶ docs/architecture/step-registry
▶ docs/architecture/ci-operator

20
22

-1
0
-2
0

ci-operator multi-stage tests
Introduction

Introduction

Documentation for the topics covered today is somewhat scattered among
several pages. The main content is in the dedicated step registry page, but
somedescriptions and examples can also be found inmore general pages such
as ci-operator and others.
The original design document is also a good source of information about
the basic architecture. It also describes very well the historical context in
which multi-stage tests and the step registry were developed and added to
ci-operator and the OpenShift CI.

https://docs.google.com/document/d/1md-1BMf4_7mtKgGVoeZ3jOh4zSIBSjwl6vTTAYESwIM
https://docs.google.com/document/d/1md-1BMf4_7mtKgGVoeZ3jOh4zSIBSjwl6vTTAYESwIM
https://docs.ci.openshift.org
https://docs.ci.openshift.org/docs/architecture/step-registry/
https://docs.ci.openshift.org/docs/architecture/ci-operator/
https://docs.google.com/document/d/1md-1BMf4_7mtKgGVoeZ3jOh4zSIBSjwl6vTTAYESwIM
https://docs.google.com/document/d/1md-1BMf4_7mtKgGVoeZ3jOh4zSIBSjwl6vTTAYESwIM
https://docs.ci.openshift.org
https://docs.ci.openshift.org/docs/architecture/step-registry/
https://docs.ci.openshift.org/docs/architecture/ci-operator/

Introduction / motivation

ca. Aug 2019
▶ Two test types.

▶ container
▶ template

▶ Desire to create tests for increasingly varied scenarios.
▶ Existing tests already complex and barely maintained.

4

Introduction / motivation

ca. Aug 2019
▶ Two test types.

▶ container
▶ template

▶ Desire to create tests for increasingly varied scenarios.
▶ Existing tests already complex and barely maintained.

20
22

-1
0
-2
0

ci-operator multi-stage tests
Introduction

Motivation
Introduction / motivation

That context in summary is this: ci-operator started its life supporting only
simple container tests. These are fairly self-contained tests which execute a
single command using a container image.
Then (likely on a Sunday), template tests were added. These were amorphous
tests which bypassed most of the configuration format and instead injected a
new test definition at runtime. Creating and maintaining a template test was
unnecessarily difficult, so practically only a few people had the knowledge and
the stomach to do it.
At the same time, the OpenShift CI was growing, being used both by more
components and for more varied types of tests. It was clear that requiring a
new template test for each new test scenario would be impossible, so a new
format for test definitions had to be created.

Introduction / motivation

Ah, the templates…

complex, esoteric and fragile

difficult to extend and use

not able to share common test logic

duplication and fragmentation

5

Introduction / motivation

Ah, the templates…

complex, esoteric and fragile

difficult to extend and use

not able to share common test logic

duplication and fragmentation

20
22

-1
0
-2
0

ci-operator multi-stage tests
Introduction

Motivation
Introduction / motivation

This sentiment is visible in the design document, which constantly mentions
the limitations of templates which impeded the maintenance of existing and
creation of new tests.

Introduction / motivation

▶ Small number of extremely complex Pod definitions.
▶ Python embedded in Bash embedded in YAML embedded in …
▶ Each responsible for the entire execution of an E2E test.

▶ Equally small set of people willing to / capable of “maintaining”
them.

▶ Adding a new test scenario
▶ copying an existing template (thousands of lines of YAML)
▶ minor edits
▶ (extreme duplication)

▶ Configuration exposed and required knowledge of byzantine
implementation details of ci-operator.

▶ etc.

6

Introduction / motivation

▶ Small number of extremely complex Pod definitions.
▶ Python embedded in Bash embedded in YAML embedded in …
▶ Each responsible for the entire execution of an E2E test.

▶ Equally small set of people willing to / capable of “maintaining”
them.

▶ Adding a new test scenario
▶ copying an existing template (thousands of lines of YAML)
▶ minor edits
▶ (extreme duplication)

▶ Configuration exposed and required knowledge of byzantine
implementation details of ci-operator.

▶ etc.

20
22

-1
0
-2
0

ci-operator multi-stage tests
Introduction

Motivation
Introduction / motivation

Here is a small selection (an entire presentation could be made about them):

• Template tests are defined in a single YAML file containing, among other
items, a Pod definition. The definition consisted of several inline bash
scripts, sometimes with multiple fragments of other languages inside
them.

• The entirety of the test flow had to be contained in this single YAML file.

• Because definitions were completely self-contained, creating new types
of tests required blindly copying colossal YAML files and editing usually
just a few lines, creating massive duplication and divergence. Changing
common code required editing all copies.

• The integration with other parts of ci-operator (images, releases,
etc.) was very precarious, requiring test authors to know obscure
aspects of the underlying implementation.

For these reasons and many others, the set of maintainers of these test defi-
nitions was virtually non-existent.

Introduction / motivation

▶ Small number of extremely complex Pod definitions.
▶ Python embedded in Bash embedded in YAML embedded in …
▶ Each responsible for the entire execution of an E2E test.

▶ Equally small set of people willing to / capable of “maintaining”
them.

▶ Adding a new test scenario
▶ copying an existing template (thousands of lines of YAML)
▶ minor edits
▶ (extreme duplication)

▶ Configuration exposed and required knowledge of byzantine
implementation details of ci-operator.

▶ etc.

6

Introduction / motivation

▶ Small number of extremely complex Pod definitions.
▶ Python embedded in Bash embedded in YAML embedded in …
▶ Each responsible for the entire execution of an E2E test.

▶ Equally small set of people willing to / capable of “maintaining”
them.

▶ Adding a new test scenario
▶ copying an existing template (thousands of lines of YAML)
▶ minor edits
▶ (extreme duplication)

▶ Configuration exposed and required knowledge of byzantine
implementation details of ci-operator.

▶ etc.20
22

-1
0
-2
0

ci-operator multi-stage tests
Introduction

Motivation
Introduction / motivation

Here is a small selection (an entire presentation could be made about them):

• Template tests are defined in a single YAML file containing, among other
items, a Pod definition. The definition consisted of several inline bash
scripts, sometimes with multiple fragments of other languages inside
them.

• The entirety of the test flow had to be contained in this single YAML file.

• Because definitions were completely self-contained, creating new types
of tests required blindly copying colossal YAML files and editing usually
just a few lines, creating massive duplication and divergence. Changing
common code required editing all copies.

• The integration with other parts of ci-operator (images, releases,
etc.) was very precarious, requiring test authors to know obscure
aspects of the underlying implementation.

For these reasons and many others, the set of maintainers of these test defi-
nitions was virtually non-existent.

Test definitions

7

Test definitions

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Test definitions

▶ regular ci-operator test
▶ images
▶ release images
▶ artifacts
▶ cluster profiles
▶ …

8

Test definitions

▶ regular ci-operator test
▶ images
▶ release images
▶ artifacts
▶ cluster profiles
▶ …

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Test definitions

The first thing to note aboutmulti-stage tests is that they are just another type
of test, just as container tests are. This makes all other parts of ci-operator
easily and naturally available to them.
On the implementation side, they are just another type of ci-operator step
and are fully defined by the configuration file (and registry). Parsing and inter-
preting a multi-stage test does not require any of the arcane techniques used
in the implementation of template tests.

Test definitions

https://github.com/openshift/release/blob/master/ci-operator/
config/openshift/ci-tools/openshift-ci-tools-master.yaml

tests:
- as: e2e

steps:
test:
- as: e2e

commands: … make e2e
from: test-bin
…

9

Test definitions

https://github.com/openshift/release/blob/master/ci-operator/
config/openshift/ci-tools/openshift-ci-tools-master.yaml

tests:
- as: e2e
steps:
test:
- as: e2e

commands: … make e2e
from: test-bin
…

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Test definitions

Multi-stage tests are defined in the configuration file just like any other type
of test. Amulti-stage test is distinguished by the steps entry. Definitions can
be complex, but e2e in ci-tools is a good example of a minimal test.
(the actual test also has a credentials section, which is not revelant for this
example and will be explained later)

https://github.com/openshift/release/blob/master/ci-operator/config/openshift/ci-tools/openshift-ci-tools-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/ci-tools/openshift-ci-tools-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/ci-tools/openshift-ci-tools-master.yaml
https://github.com/openshift/release/blob/master/ci-operator/config/openshift/ci-tools/openshift-ci-tools-master.yaml

Test definitions

tests:
- as: e2e

steps:
test:
- as: e2e
commands: … make e2e
from: test-bin
…

tests:
- as: e2e
commands: … make e2e
container:
from: test-bin
…

10

Test definitions

tests:
- as: e2e

steps:
test:
- as: e2e

commands: … make e2e
from: test-bin
…

tests:
- as: e2e

commands: … make e2e
container:

from: test-bin
…

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Test definitions

With this format, it is equivalent to the container test type (unifying their
implementation is a long-term goal). These tests will have slightly different
executions, but will have the same overall effect.

Test definitions / phases

▶ pre/test/post
▶ serial execution

▶ “short-circuit” execution for pre/test
▶ post steps always executed

▶ each step corresponds to a Pod
▶ shared data can be placed in a special directory

11

Test definitions / phases

▶ pre/test/post
▶ serial execution

▶ “short-circuit” execution for pre/test
▶ post steps always executed

▶ each step corresponds to a Pod
▶ shared data can be placed in a special directory

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Phases
Test definitions / phases

What differentiates multi-stage tests from simple container tests (or from
templates, for that matter) are the execution phases: pre, test, and post.
Superficially, they are simple sequences of steps (isolated test scripts) exe-
cuted in serial, but each phase has distinct semantic characteristics.

pre is a sequence of preparatory steps. It should perform the
setup necessary for the test to be executed (e.g. creating an
ephemeral cluster). If any of the steps fail, it is assumed that
the test cannot continue and the rest of the pre steps as well
as all of the test steps are not executed.

test is a sequence of one or more steps which execute the actual
test code. If any of the steps fail, the rest of the steps are not
executed.

post is a sequence of steps which releases any resources acquired
by the previous phases. It is always executed and, unlike the
others, always executed in its entirety, even if some of its
steps fail.

Test definitions / phases

$SHARED_DIR
▶ Small storage space for inter-step data.
▶ Implemented using a Kubernetes Secret.
▶ Hard 1MB limit, no directories.
▶ Completely rewritten by the contents of the directory in the pod

after the step script is executed.
▶ State in the ephemeral cluster can be used for higher-bandwidth

communication between steps.
▶ kubeconfig is treated especially.
▶ Data intended for debugging tests should be placed in the

artifacts directory.

12

Test definitions / phases

$SHARED_DIR
▶ Small storage space for inter-step data.
▶ Implemented using a Kubernetes Secret.
▶ Hard 1MB limit, no directories.
▶ Completely rewritten by the contents of the directory in the pod

after the step script is executed.
▶ State in the ephemeral cluster can be used for higher-bandwidth

communication between steps.
▶ kubeconfig is treated especially.
▶ Data intended for debugging tests should be placed in the

artifacts directory.20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Phases
Test definitions / phases

Unlike template tests:

• Each step is executed in its own isolated pod.

• Execution is serial: a step is executed only after the previous step ends.

• ci-operatormanages the execution of individual steps.

For data which has to be passed between steps, a small storage space is pro-
vided, which is mounted in every pod. It is implemented using Kubernetes
Secrets, so it has limitations. However, most tests can use external means
(such as the ephemeral OpenShift cluster) for larger data. The artifacts di-
rectory is also available, just like in other types of tests.
Becauseci-operator is optimized forOpenShift E2E tests, some files in the
shareddirectory (such as thekubeconfig for ephemeral clusters) are treated
specially.

Test definitions / images

Images
▶ from

▶ pipeline images
▶ root, src, bin, …
▶ base_images
▶ images

▶ “stable” images
▶ releases
▶ tag_specification

▶ from_image
▶ ≈ base_images
▶ from_image:

namespace: ocp
name: upi-installer
tag: 4.12

13

Test definitions / images

Images
▶ from

▶ pipeline images
▶ root, src, bin, …
▶ base_images
▶ images

▶ “stable” images
▶ releases
▶ tag_specification

▶ from_image
▶ ≈ base_images
▶ from_image:

namespace: ocp
name: upi-installer
tag: 4.1220

22
-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Images
Test definitions / images

Unlike container tests, steps can be executed using any ci-operator image.
Pipeline images, which are either imported or built, can be used, as well as
images from release streams or payloads.
A mechanism (from_image) exists for using imported images in shared test
definitions. Here, we will just note its mode of operation is equivalent to
base_images; shared definitions will be explained in the step registry sec-
tion.

Test definitions / credentials

Credentials
▶ Vault→ build cluster→ test namespace→ test pod
▶ ci-operatormust have access to the source namespace.
▶ The test-credentials namespace is pre-configured for

regular users.
▶ Supplanted old methods.

▶ secret
▶ secrets
▶ --secret-dir
▶ etc.

▶ credentials:
- namespace: ns
name: name
mount_path: /path

14

Test definitions / credentials

Credentials
▶ Vault→ build cluster→ test namespace→ test pod
▶ ci-operatormust have access to the source namespace.
▶ The test-credentials namespace is pre-configured for

regular users.
▶ Supplanted old methods.

▶ secret
▶ secrets
▶ --secret-dir
▶ etc.

▶ credentials:
- namespace: ns

name: name
mount_path: /path20

22
-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Credentials
Test definitions / credentials

Another major improvement over other test types is the credentials sec-
tion available in steps. The Secret objects listed therein will be imported into
the test namespace and mounted in the corresponding pods.
The Secret must already exist and be accessible, but no other setup is nec-
essary. For regular users, the current flow is to create a secret collection in
Vault and synchronize it to the build clusters using special values in the cre-
dentials. A test-credentials namespace is preconfigured in each cluster
for this purpose.

Test definitions / parameters

Parameters
▶ Key/value data declared in a step.
▶ Ultimately become environmental variables.
▶ Can be overridden (coming soon).

as: openshift-e2e-test
from: tests
commands: openshift-e2e-test-commands.sh
env:
- name: TEST_SUITE

default: openshift/conformance/parallel
documentation: |

The test suite to run. Use 'openshift-test
run --help' to list available suites.

…

15

Test definitions / parameters

Parameters
▶ Key/value data declared in a step.
▶ Ultimately become environmental variables.
▶ Can be overridden (coming soon).

as: openshift-e2e-test
from: tests
commands: openshift-e2e-test-commands.sh
env:
- name: TEST_SUITE

default: openshift/conformance/parallel
documentation: |
The test suite to run. Use 'openshift-test
run --help' to list available suites.

…20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Parameters
Test definitions / parameters

Parameters are a way of generating slight test variations without needing a
completely new step definition. Ultimately, they are key/value data which be-
come simple environmental variables set in the corresponding pods. One or
more steps can declare a parameter, optionally with a default value — all pa-
rameters must be declared and be given a value in a test definition.
The hierarchical relation between registry components (explained in a later
section) allows great freedom in how parameters can be given values and how
tests can be composed.

Test definitions / dependencies

Dependencies
▶ ci-operator image pull spec→ test pod
▶ Establishes images→ test dependency.
▶ as: test-step

dependencies:
- name: pipeline:bin
env: BIN_IMG

- name: release:4.12
env: RELEASE_4_12

▶ #!/bin/bash
use "$BIN_IMG"
use "$RELEASE_4_12"

16

Test definitions / dependencies

Dependencies
▶ ci-operator image pull spec→ test pod
▶ Establishes images→ test dependency.
▶ as: test-step

dependencies:
- name: pipeline:bin

env: BIN_IMG
- name: release:4.12

env: RELEASE_4_12
▶ #!/bin/bash

use "$BIN_IMG"
use "$RELEASE_4_12"

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Dependencies
Test definitions / dependencies

Tests sometimes need to refer to imported or built images, not as their exe-
cution image, but as a general pull spec. For this, the dependencies section
can be used. name references either a pipeline or release image: the pull spec
referring to the image in the temporary namespace will be available to the cor-
responding pod as an environmental variable.
This also establishes the dependencies between the required (ci-operator)
steps and the test so that the latter is only executedwhen the images are avail-
able.

Test definitions / dependencies

openshift-e2e-tests-ref.yaml
dependencies:
- name: "release:latest"

env: OPENSHIFT_UPGRADE_RELEASE_IMAGE_OVERRIDE

openshift-e2e-tests-commands.sh
openshift-tests run-upgrade \

"${TEST_UPGRADE_SUITE}" \
--to-image \

"${OPENSHIFT_UPGRADE_RELEASE_IMAGE_OVERRIDE}" \
--options "${TEST_UPGRADE_OPTIONS-}" \
--provider "${TEST_PROVIDER}" \
-o "${ARTIFACT_DIR}/e2e.log" \
--junit-dir "${ARTIFACT_DIR}/junit"

17

Test definitions / dependencies

openshift-e2e-tests-ref.yaml
dependencies:
- name: "release:latest"

env: OPENSHIFT_UPGRADE_RELEASE_IMAGE_OVERRIDE

openshift-e2e-tests-commands.sh
openshift-tests run-upgrade \

"${TEST_UPGRADE_SUITE}" \
--to-image \

"${OPENSHIFT_UPGRADE_RELEASE_IMAGE_OVERRIDE}" \
--options "${TEST_UPGRADE_OPTIONS-}" \
--provider "${TEST_PROVIDER}" \
-o "${ARTIFACT_DIR}/e2e.log" \
--junit-dir "${ARTIFACT_DIR}/junit"20

22
-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Dependencies
Test definitions / dependencies

One (simplified) example is shown here, where the upgrade test references
whatever the latest release payload is in a particular test namespace.

Test definitions / dependencies

Leases
▶ ci-operator→ Boskos→ test pod
▶ Generalization of implicit lease added by cluster profiles
▶ Leased resource name is available to the test script via

environmental variable.
▶ leases:

- env: OVIRT_UPGRADE_LEASED_RESOURCE
resource_type: ovirt-upgrade-quota-slice
count: 42

18

Test definitions / dependencies

Leases
▶ ci-operator→ Boskos→ test pod
▶ Generalization of implicit lease added by cluster profiles
▶ Leased resource name is available to the test script via

environmental variable.
▶ leases:

- env: OVIRT_UPGRADE_LEASED_RESOURCE
resource_type: ovirt-upgrade-quota-slice
count: 42

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

Dependencies
Test definitions / dependencies

ci-operator has an integration with the Boskos leasing server, which allows
resources of limited capacity to be declared. ci-operatorwill request these
resources before starting the execution of the test, periodically renew them,
and release them when the test ends.
Initially (even in the template days, but also currently), this was triggered by
cluster profiles. Each profile is declared in ci-tools and has a resource type
associated with it.
leases are a generalization of this concept. Instead of a cluster profile, or in
addition to it, a test or registry component can declare additional resources
which it requires before it is allowed to start. The name of the resource is avail-
able as an environmental variable, which is often used to pass some informa-
tion to the test step.

Test definitions / etc.

▶ best-effort steps
▶ catalogues / optional operators
▶ KUBECONFIG
▶ cluster profiles
▶ oc CLI injection
▶ no ServiceAccount credentials
▶ cluster claims
▶ VPN connection
▶ …

19

Test definitions / etc.

▶ best-effort steps
▶ catalogues / optional operators
▶ KUBECONFIG
▶ cluster profiles
▶ oc CLI injection
▶ no ServiceAccount credentials
▶ cluster claims
▶ VPN connection
▶ …

20
22

-1
0
-2
0

ci-operator multi-stage tests
Test definitions

etc.
Test definitions / etc.

This is an abbreviated list of aspects of multi-stage tests which cannot be cov-
ered today due to time constraints. Contrary to template tests, most of the
implementation is properly documented, so consult the pages linked at the
beginning of the presentation.

Step registry

20

Step registry

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Step registry

Goals
▶ discoverable
▶ referenceable
▶ verifiable
▶ reusable

21

Step registry

Goals
▶ discoverable
▶ referenceable
▶ verifiable
▶ reusable

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Step registry

Beyond improving the implementation of tests, the design ofmulti-stage tests
also had the major goal of improving the process of creating tests. It identi-
fied several attributes which the new format should have, discussed in the next
sections.

Step registry / discoverable

▶ https://steps.ci.openshift.org
▶ https://steps.ci.openshift.org/workflow/ipi-aws
▶ https://steps.ci.openshift.org/chain/ipi-aws-pre
▶ https://steps.ci.openshift.org/reference/

ipi-install-install

22

Step registry / discoverable

▶ https://steps.ci.openshift.org
▶ https://steps.ci.openshift.org/workflow/ipi-aws
▶ https://steps.ci.openshift.org/chain/ipi-aws-pre
▶ https://steps.ci.openshift.org/reference/

ipi-install-install

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Discoverable
Step registry / discoverable

Each component of a test definition is easily discoverable. There is no longer
the need to excavate giant bash scripts embedded in YAML definitions.
steps.ci.openshift.org is a web interface for test definitions which is
heavily cross-linked. All jobs, tests, and registry components are listed, in a
manner which makes it easy to discover exactly how a test is or can be de-
fined.

https://steps.ci.openshift.org
https://steps.ci.openshift.org/workflow/ipi-aws
https://steps.ci.openshift.org/chain/ipi-aws-pre
https://steps.ci.openshift.org/reference/ipi-install-install
https://steps.ci.openshift.org/reference/ipi-install-install
https://steps.ci.openshift.org
https://steps.ci.openshift.org/workflow/ipi-aws
https://steps.ci.openshift.org/chain/ipi-aws-pre
https://steps.ci.openshift.org/reference/ipi-install-install
https://steps.ci.openshift.org/reference/ipi-install-install

Step registry / referenceable

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/
periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/
1579723667426775040

Running step e2e-vsphere-ipi-install-install.
Logs for container test in pod e2e-vsphere-ipi-install-install:
…
Step e2e-vsphere-ipi-install-install failed after 23m20s.
Step phase pre failed after 40m10s.
…
Link to step on registry info site: …
Link to job on registry info site: …

23

Step registry / referenceable

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/
periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/
1579723667426775040

Running step e2e-vsphere-ipi-install-install.
Logs for container test in pod e2e-vsphere-ipi-install-install:
…
Step e2e-vsphere-ipi-install-install failed after 23m20s.
Step phase pre failed after 40m10s.
…
Link to step on registry info site: …
Link to job on registry info site: …

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Referenceable
Step registry / referenceable

When a job fails, the ci-operator output includes links to the definitions of
the steps which failed.

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/1579723667426775040
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/1579723667426775040
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/1579723667426775040
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/1579723667426775040
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/1579723667426775040
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-okd-4.10-e2e-vsphere/1579723667426775040

Step registry / referenceable

https://steps.ci.openshift.org/workflow/ipi-aws#approvers

▶ wking
▶ vrutkovs
▶ abhinavdahiya
▶ deads2k
▶ staebler
▶ technical-release-team-approvers
▶ jianlinliu
▶ yunjiang29

24

Step registry / referenceable

https://steps.ci.openshift.org/workflow/ipi-aws#approvers

▶ wking
▶ vrutkovs
▶ abhinavdahiya
▶ deads2k
▶ staebler
▶ technical-release-team-approvers
▶ jianlinliu
▶ yunjiang29

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Referenceable
Step registry / referenceable

Each of those pages also has links to the definition in GitHub, as well as a list
of its OWNERS (reviewers and approvers). This way, the error output has (in
principle) the information required to go from a failure to the possible cause
and to those who may be able to assist.

https://steps.ci.openshift.org/workflow/ipi-aws#approvers
https://steps.ci.openshift.org/workflow/ipi-aws#approvers

Step registry / verifiable

▶ pull-ci-openshift-release-master-step-registry-shellcheck
▶ https://www.shellcheck.net
▶ find ci-operator/step-registry -name '*.sh' -print0 \

| xargs -0 -n1 shellcheck -S warning

25

Step registry / verifiable

▶ pull-ci-openshift-release-master-step-registry-shellcheck
▶ https://www.shellcheck.net
▶ find ci-operator/step-registry -name '*.sh' -print0 \

| xargs -0 -n1 shellcheck -S warning

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Verifiable
Step registry / verifiable

The quality of scripts in the step registry is verified using shellcheck, a
(Haskell) program which identifies problems in bash source code (syntax er-
rors, unquoted variables, etc.). It is executed as a blocking pre-submit job
which verifies every shell script in the registry directory.

https://www.shellcheck.net
https://www.shellcheck.net

Step registry / reusable

▶ reference
▶ chain
▶ workflow

26

Step registry / reusable

▶ reference
▶ chain
▶ workflow

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

The step registry is a central place where parts of test definitions are stored.
Several types of registry components can be combined and used by a large
number of tests.

Step registry / reusable

https://steps.ci.openshift.org/reference/ipi-install-install

ref:
as: ipi-install-install
from: installer
grace_period: 10m
commands: ipi-install-install-commands.sh
cli: latest
resources:
requests:
cpu: 1000m
memory: 2Gi

(cont.)

27

Step registry / reusable

https://steps.ci.openshift.org/reference/ipi-install-install

ref:
as: ipi-install-install
from: installer
grace_period: 10m
commands: ipi-install-install-commands.sh
cli: latest
resources:
requests:

cpu: 1000m
memory: 2Gi

(cont.)20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

A reference is the lowest level of step definition. It corresponds directly to the
step definition inline in a test shown in previous examples. In this way, sharing
code between tests can be as simple as moving a step definition virtually un-
changed to the registry and referencing it.
In this example, the installation step which creates ephemeral clusters is de-
fined once in the registry and used everywhere it is needed with a simple ref:
ipi-install-install.

https://steps.ci.openshift.org/reference/ipi-install-install
https://steps.ci.openshift.org/reference/ipi-install-install

Step registry / reusable

(cont.)

credentials:
- namespace: test-credentials
name: loki-stage-collector-test-secret
mount_path: /var/run/loki-secret

…
env:
- name: OPENSHIFT_INSTALL_EXPERIMENTAL_DUAL_STACK
default: "false"
documentation: Using experimental Azure dual-stack support

…
dependencies:
- name: "release:latest"
env: OPENSHIFT_INSTALL_RELEASE_IMAGE_OVERRIDE

…
documentation: |-
The IPI install step runs the OpenShift Installer …

28

Step registry / reusable

(cont.)

credentials:
- namespace: test-credentials
name: loki-stage-collector-test-secret
mount_path: /var/run/loki-secret

…
env:
- name: OPENSHIFT_INSTALL_EXPERIMENTAL_DUAL_STACK
default: "false"
documentation: Using experimental Azure dual-stack support

…
dependencies:
- name: "release:latest"
env: OPENSHIFT_INSTALL_RELEASE_IMAGE_OVERRIDE

…
documentation: |-
The IPI install step runs the OpenShift Installer …20

22
-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Step registry / reusable

https://steps.ci.openshift.org/chain/ipi-aws-pre

chain:
as: ipi-aws-pre
steps:
- chain: ipi-conf-aws
- chain: ipi-install
documentation: |-
The IPI setup step contains all steps that provision an
OpenShift cluster with a default configuration on AWS.

29

Step registry / reusable

https://steps.ci.openshift.org/chain/ipi-aws-pre

chain:
as: ipi-aws-pre
steps:
- chain: ipi-conf-aws
- chain: ipi-install
documentation: |-
The IPI setup step contains all steps that provision an
OpenShift cluster with a default configuration on AWS.

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Sequences of steps can be combined into chains, which are analogous to the
phases of a multi-stage test. Chains are the main method of code reuse in the
registry. Beyond simply grouping steps, they can also contain definitions for
step parameters and other options, as explained later.

https://steps.ci.openshift.org/chain/ipi-aws-pre
https://steps.ci.openshift.org/chain/ipi-aws-pre

Step registry / reusable

https://steps.ci.openshift.org/workflow/ipi-aws

workflow:
as: ipi-aws
steps:
pre:
- chain: ipi-aws-pre
post:
- chain: ipi-aws-post

documentation: |-
The IPI workflow provides pre- and post- steps that
provision and deprovision an OpenShift cluster with a
default configuration on AWS, allowing job authors to
inject their own end-to-end test logic.

All modifications to this workflow should be done by
modifying the ìpi-aws-{pre,post}`chains to allow other
workflows to mimic and extend this base workflow without
a need to backport changes.

30

Step registry / reusable

https://steps.ci.openshift.org/workflow/ipi-aws

workflow:
as: ipi-aws
steps:
pre:
- chain: ipi-aws-pre
post:
- chain: ipi-aws-post

documentation: |-
The IPI workflow provides pre- and post- steps that
provision and deprovision an OpenShift cluster with a
default configuration on AWS, allowing job authors to
inject their own end-to-end test logic.

All modifications to this workflow should be done by
modifying the ìpi-aws-{pre,post}`chains to allow other
workflows to mimic and extend this base workflow without
a need to backport changes.20

22
-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Finally, a complete test definition can be grouped into a workflow. A workflow
definition is exactly the same as a test definition, and usually encapsulates a
test flow from beginning to end.
With a workflow, a shared test definition can be as simple as a few lines. If
necessary, each phase (i.e. pre, test, post) can still be redefined in the test
which includes the workflow. This will replace the entire sequence of steps for
that particular phase.

https://steps.ci.openshift.org/workflow/ipi-aws
https://steps.ci.openshift.org/workflow/ipi-aws

Step registry / reusable

as: e2e-aws
steps:

pre:
- as: conf-this

commands: # …
- as: conf-that

commands: # …
- as: install

commands: # …
- as: rbacs

commands: # …

test:
- as: test
commands: # …

post:
- as: gather-this

commands: # …
- as: gather-that

commands: # …
- as: uninstall

commands: # …

31

Step registry / reusable

as: e2e-aws
steps:
pre:
- as: conf-this
commands: # …

- as: conf-that
commands: # …

- as: install
commands: # …

- as: rbacs
commands: # …

test:
- as: test

commands: # …
post:
- as: gather-this

commands: # …
- as: gather-that

commands: # …
- as: uninstall

commands: # …

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

The next few examples will demonstrate the process of going from a com-
pletely idiosyncratic test to one that can be shared by multiple definitions in
a few lines of YAML.
This definition shows a typical OpenShift E2E test: a cluster is created based
on some configuration steps, the tests are executed, and the cluster is de-
stroyed. Here, commands… in each definition stands for the particular entries
which would be declared in each step, which can anywhere from several lines
to several pages long.

Step registry / reusable

as: e2e-aws
steps:

pre:
- ref: conf-this
- ref: conf-that
- ref: install
- ref: rbacs
…

ref:
as: conf-this
commands: # …

ref:
as: conf-that
commands: # …

…

32

Step registry / reusable

as: e2e-aws
steps:
pre:
- ref: conf-this
- ref: conf-that
- ref: install
- ref: rbacs
…

ref:
as: conf-this
commands: # …

ref:
as: conf-that
commands: # …

…

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

The first… step in the process would be to move individual step definitions to
the registry and replace the original oneswith references. This allows any num-
ber of tests to use the shared definition and is already an enormous improve-
ment over template tests.

Step registry / reusable

as: e2e-aws
steps:

pre:
- chain: aws-pre
test: # …
post:
- chain: aws-post

chain:
as: aws-pre

steps:
- ref: conf-this
- ref: conf-that
- ref: install
- ref: rbacs

chain:
as: aws-post
steps:
…

33

Step registry / reusable

as: e2e-aws
steps:
pre:
- chain: aws-pre
test: # …
post:
- chain: aws-post

chain:
as: aws-pre
steps:
- ref: conf-this
- ref: conf-that
- ref: install
- ref: rbacs

chain:
as: aws-post
steps:
…

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Next, a sequence of steps from the registry can be placed in one or more
chains. This allows the sequence (and/or its configuration) to be changed
without the need to modify every test definition.

Step registry / reusable

as: e2e-aws
steps:

workflow: aws-ipi
test: # …

workflow:
as: aws-ipi
pre:
- chain: aws-pre
post:
- chain: aws-post

34

Step registry / reusable

as: e2e-aws
steps:
workflow: aws-ipi
test: # …

workflow:
as: aws-ipi
pre:
- chain: aws-pre
post:
- chain: aws-post

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

A complete test pattern (e.g. “E2E test on AWS”) can then be put into a work-
flow. This abstracts the setup and cleanup phases so that the test definition
contains only a reference to the workflow and the actual test steps which are
to be executed.

Step registry / reusable

as: e2e-aws
steps:

workflow: aws-ipi

workflow:
as: openshift-e2e-aws
pre:
- chain: aws-pre
test:
- ref: openshift-e2e-test
post:
- chain: aws-post

35

Step registry / reusable

as: e2e-aws
steps:
workflow: aws-ipi

workflow:
as: openshift-e2e-aws
pre:
- chain: aws-pre
test:
- ref: openshift-e2e-test
post:
- chain: aws-post

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Going even further, an entire test suite can be shared among several repos-
itories. In this case, the “OpenShift on AWS E2E” test suite is put into its
own workflow (n.b.: which shares the pre/post chains with other workflows).
Repositories can include this entire suite by simply declaring a test which ref-
erences the workflow.

Step registry / reusable

$ find ci-operator/step-registry/ -name 'ipi-conf-*-ref.yaml' \
| wc -l

75
$ find ci-operator/step-registry/ -name 'ipi-conf-*-ref.yaml' \

| sed 's,.*/,,; s/-ref\.yaml//' | shuf | head -15 | sort
ipi-conf-additional-enabled-capabilities
ipi-conf-alibabacloud
ipi-conf-azure-provisioned-des
ipi-conf-azurestack-creds
ipi-conf-azure-vmgenv1
ipi-conf-azure-workers-marketimage
ipi-conf-etcd-on-ramfs
ipi-conf-libvirt
ipi-conf-openstack-enable-octavia
ipi-conf-ovirt-generate-csi-test-manifest
ipi-conf-ovirt-generate-csi-test-manifest-release-4.6-4.8
ipi-conf-ovirt-generate-install-config
ipi-conf-ovirt-generate-install-config-params
ipi-conf-ovirt-generate-ovirt-config
ipi-conf-vsphere-zones

36

Step registry / reusable

$ find ci-operator/step-registry/ -name 'ipi-conf-*-ref.yaml' \
| wc -l

75
$ find ci-operator/step-registry/ -name 'ipi-conf-*-ref.yaml' \

| sed 's,.*/,,; s/-ref\.yaml//' | shuf | head -15 | sort
ipi-conf-additional-enabled-capabilities
ipi-conf-alibabacloud
ipi-conf-azure-provisioned-des
ipi-conf-azurestack-creds
ipi-conf-azure-vmgenv1
ipi-conf-azure-workers-marketimage
ipi-conf-etcd-on-ramfs
ipi-conf-libvirt
ipi-conf-openstack-enable-octavia
ipi-conf-ovirt-generate-csi-test-manifest
ipi-conf-ovirt-generate-csi-test-manifest-release-4.6-4.8
ipi-conf-ovirt-generate-install-config
ipi-conf-ovirt-generate-install-config-params
ipi-conf-ovirt-generate-ovirt-config
ipi-conf-vsphere-zones20

22
-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Since the configuration and installation steps have their own chains in the reg-
istry, it is very easy to combine one or more configuration steps to create a
specific test scenario, then include all of the other registry components which
implement the machinery behind the test (cluster installation, artifact gather-
ing, etc.).
A quick look at the registry shows there is a large number of configuration
steps, many of which can be combined (e.g. to create a test on a cluster with
”additional capabilities” and ”etcd on ramfs using libvirt).

Step registry / reusable

https://docs.ci.openshift.org/docs/architecture/step-registry/
#hierarchical-propagation

as: openshift-e2e-test
env:
- name: TEST_SUITE
…

37

Step registry / reusable

https://docs.ci.openshift.org/docs/architecture/step-registry/
#hierarchical-propagation

as: openshift-e2e-test
env:
- name: TEST_SUITE
…

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

One last, more advanced method of reuse is what is called hierarchical propa-
gation. Registry components usedby a test are arranged as a tree: the test can
include a workflow, which can include any number of chains, which can them-
selves include chains recursively, which ultimately include steps.
When all of these definitions are assembled to generate the final step list exe-
cuted by the test, several configuration options are propagated from the root
of the tree to the leaves (namely: parameters, dependencies, leases). This
means definitions in tests override those in workflows, which in turn override
those in chains, which in turn override those in steps. These definitions are
strictly checked such that every option declared in a parent component has
to be declared in a subcomponent and has to have a resulting value after this
process completes.

https://docs.ci.openshift.org/docs/architecture/step-registry/#hierarchical-propagation
https://docs.ci.openshift.org/docs/architecture/step-registry/#hierarchical-propagation
https://docs.ci.openshift.org/docs/architecture/step-registry/#hierarchical-propagation
https://docs.ci.openshift.org/docs/architecture/step-registry/#hierarchical-propagation

Step registry / reusable

tests:
- as: e2e

steps:
test:
- ref: openshift-e2e-test
env:

TEST_SUITE: openshift/conformance/parallel

38

Step registry / reusable

tests:
- as: e2e
steps:
test:
- ref: openshift-e2e-test
env:

TEST_SUITE: openshift/conformance/parallel

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

In this example, a test includes the step shown in the previous slide and spec-
ifies a value for its parameter. It must do so, since the parameter does not
have a default. Similarly, giving the parameter a value without including a step
which declares it would be an error.

Step registry / reusable

workflow:
as: openshift-e2e-serial
steps:

test:
- ref: openshift-e2e-test
env:

TEST_SUITE: openshift/conformance/serial

tests:
- as: e2e

steps:
workflow: openshift-e2e-serial

39

Step registry / reusable

workflow:
as: openshift-e2e-serial
steps:
test:
- ref: openshift-e2e-test
env:

TEST_SUITE: openshift/conformance/serial

tests:
- as: e2e
steps:
workflow: openshift-e2e-serial

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable
Step registry / reusable

Hierarchical propagation allows the parameter value to be defined in a work-
flow (or a chain). This way, any test which includes the workflow will use that
value for the parameter, since it would propagate down from the workflow to
the step.
While nonsensical in this case, the test could also give the parameter a value,
which would override the value in the workflow, since tests are the root of the
resolution tree.

Thank you

40

Thank you

20
22

-1
0
-2
0

ci-operator multi-stage tests
Step registry

Reusable

	Introduction
	Test definitions
	Step registry

